

GenFit2: Test RKTrackRep

Jin, Xiaorong, Haiwang Mar. 22, 2016

Outline

Speed Up!

- Discussed with Jin. We decided to use RKTrackRep built in with the current release of GenFit2.
- RKTrackRep is mature and used in many experiments.
- The sPHENIX geometry could be ported to TGeo.
- Can run G4 simulation and RKTrackRep simultaneously.

RKTrackRep:

- Developed for PandaRoot, and have been used in several experiments: . Belle II, PANDA, SHiP, AFIS, GEM-TPC, FOPI, ...
- Use TGeometry to describe the detector
- Propagate through magnetic field: Runge-Kutta method
- Material effect (energy loss, multiple scattering, etc.): GenFit's own calculation.

Today's Topic: Test RKTrackRep.

- Material effect
- Propagate through magnetic field
- Fitter test: Pull, residual.

Multiple scattering

4 station Pb 2cm thick each

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

$$y_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} x \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} x \theta_0$$

2cm Pb, 10 GeV mu+	Calculation	Geant4e
θ0	0.0027	0.0026
y0 / cm	0.0031	0.0030

2cm Pb, 10 GeV mu+	Calculation	RKTrackRep
θ0	0.0027	0.0029
y0 / cm	0.0031	0.0033

2cm Si, 10 GeV mu+	Calculation	RKTrackRep
θ0	0.00059	0.00066
y0 / cm	0.00068	0.00076

Propagate through magnetic field, 2 Tesla, in vacuum

Initial State (0 cm): 10 GeV mu+

```
3D position: TVector3 A 3D physics vector (x,y,z)=(0.000000,0.0000000,0.0000000)
3D momentum: TVector3 A 3D physics vector (x,y,z)=(0.000000,0.0000000,10.0000000)
```

Final State (10 cm)

```
3D position: TVector3 A 3D physics vector (x,y,z)=(0.000000,0.029980,10.000000)
3D momentum: TVector3 A 3D physics vector (x,y,z)=(0.000000,0.059958,9.999820)
```

Calculated py = 0.06 GeV

The data structure of GenFit2, genfit::Track

Fitter Test: Procedure

- Setup TGeo detector
- Initialize a μ with pos, mom
- Construct genfit::Track
 - Create measurements:
 - Construct RKTrackRep rep true with true pos, mom
 - Give an arbitrary detector resolution (0.1cm)
 - Propagate rep true to detector plane to get hit
 - Smear hit with resolution.
 - Create TrackRep: rep_fit
 - Smear true initial state as seed
- Do the fit.
- Extrapolate rep_fit to plane z = 0. And calculate pull, residual

Fitter test: detector setup

z plane detectors, 50μm Si

B: 2T

μ: (0,0,0)cm; (0,0,1)GeV

Yellow: measurement uncertainty × 10

Measurement Types

$m_k = H_k \tilde{x}_k + v_k$	Hit coordinates vector (can be one-dimensional). Hits are	
	counted with the index k .	
$ ilde{\pmb{x}}_k$	The (unknown) true state vector.	
H_k	Linear transformation from the vector space of state vec-	
	tors to the vector space of detector measurements, i.e. m_k	
	and $H_k \cdot \tilde{x}_k$ are in the same coordinate system. The matrix	
	has the dimension $\dim(m_k) \times \dim(\tilde{x}_k)$.	
v_k	Deviation or noise of the position measurement.	

Measurement Type:

Space Point: TPC

Planar: Silicon

Wire: Drift Chamber

Pull distribution

Residual

Summary

- Switched to RKTrackRep for now for speed and robustness.
- Leaning and testing GenFit2 with RKTrackRep
 - Material effect
 - Fitter statistical test
- Next step:
 - Real-world test with simplified sPHENIX detector.

Backups

Outline

- Discussed with Jin. And we decided to use RKTrackRep built in with the current release of GenFit2.
 - RKTrackRep is mature and used in many experiments.
 - The sPHENIX geometry could be ported to TGeo.
- Test RKTrackRep

▼ an trackReps

▼ include

- ▶ AbsMaterialInterface.h
- ▶ 🖟 DetectorConstruction.h
- ▶ In G4eTrackRep.h
- ▶ 🖟 G4GFConv.h
- ▶ MagField.h
- ▶ MaterialEffects.h
- ▶ RKTools.h
- ▶ 🖟 RKTrackRep.h
- ▶ In StepLimits.h
- ▶ In TGeoMaterialInterface.h

▼ 🚌 SFC

- ▶ 🖟 DetectorConstruction.cxx
- ▶ G4eTrackRep.cc
- ▶ G4GFConv.cxx
- genfitG4eLinkDef.h
- ▶ In MagField.cxx
- ▶ MaterialEffects.cc
- ▶ RKTools.cc
- ▶ RKTrackRep.cc
- ▶ In StepLimits.cc
- ▶ 🖟 TGeoMaterialInterface.cc
- In trackRepsLinkDef.h

